FATEK

Series

Programmable Controller

M-Series PLC Structured Language ST

User Manual

NEXT Level SOLUTION

Since the content of the manual will be revised as the version changes, this
version may not be the final version.
To download the latest version of the manual, please go to the technical

support area of www.fatek.com

FATEK AUTOMATION CORP.

M-Series PLC Strctured Language ST User Manual

http://www.fatek.com/

Index

Index

PrEfACE ..ttt ettt ettt 1
1-1 FEALUES OF ST LANGUAGE ..o 12
1-2 Adding ST Language PrOgram........iceeeseissiissessssssessns 14
User Interface of UPEerlogiC ST .. iiiiicreeeeecccreeeeeeccrneeeeeesenneeeeessssssesssssnns 1
2-5 TBERRBTZIRTIN oottt sttt iHR MARERSE
2-6 TIABRRIEZE Roooo ettt st 10
2-7 R B B B AR sttt sttt 11
Basic Program Structure of Uperlogic ST ...t 1
3-3-1 Opearation EXPreSSiON.........c.cvevrentrienienenenteenteenseesseessessesessessssenes 7
3-3-2 AENMEEIC (F % = %) ettt teesae s st sesteesaesessessaeens 7
3-3-5 Advanced Operation (EXponents).........cccoevvrevenineneninenennenenennenenes 8
ST ettt ettt ettt ettt et s e e s et et eaeaesane et esenan 8
LD ettt ettt st ettt ettt sttt sttt 9
3-4 Operand and OPEratorccceeeceneeerieeestere et e sesseenes 10
B4-1 () ettt ettt ettt ettt ettt e 12
3-4-2 ArithmetiC +, =%, / oottt ettt 12
3-4-3 Quick Addition and Subtraction ++, —-.......ccoceirrrrrnen 12
3-4-4Value COMPAre > =,<=,>,<recerrrerenreenenseesesssesssssessssssesssssseses 12
3-4-5 Equal to/Notequal to =, <> ..o 13
3-4-6 Bit shift left and right <<, >> ..o 13
3-4-7 Negation of Operand NOTcccoevrreverennrreeenneneeeaas 13
3-4-8 Negative Sign of Operand -ccocooeveveereveereeeeeenne 13
3-4-9 ASSIGN ValU@ 1= ...ttt sae e 13
3-4-10 Logic Operand AND (&) * OR(|) * XOR + XNOR......... 14
3-4-11 Remainder MOD ...ttt 14

M-Series PLC Strctured Language ST User Manual

Index

3-5-1 Single-Line Comment //.. et 15
3-5-2 Multiline Comment (* 1) [15
3-6 FIow CoNtrol and LOOPccccceeureinerenenrieinteentnseenessesesssseessssesessssesenes 16
3-6-L IF ELSE ...ttt ettt sttt st e 16
3-6-2 FOR ettt ettt sttt ss s s e a st s nas 17
3-6-3 CaSE Of ...ttt ettt et st e 18
3-6-4 WHILE LOOP & REPEAT ...ttt 19
3-6-5 BREAK / EXIT ..ttt eeasaesenes 20
3-6-6 LBL, JMP, CALL.....cotirerieeitrireeeeentetseseeesessssssesesesesenns 21
3-7 Variables and Data Type......coocvennnencncirnneeeteeeeeeeeeeeeeese e 23
BERITEB .ottt 23
3-7-1 BOOI / Bl ...ttt ettt 26
3-7-2 INtEGEr TYPE ...ttt 26
3-7-3 Floating Point ...t 26
3-7-4 CONSTANT ...ttt e ettt e es e se e sene s 30
3-8 Using PLC Register and Memory..........ccceeveeeneenenreeneneeenesnesessssenenns 32
3-9 Calling System Built-In FUNCLIONScc.oevenrrevinrreieeeneeeereeeseseeenes 33
3-9-1 THMIET ettt et 34
3-9-2 Counter / Counter_ L.t 34
3-9-3 R_TRIG / F_TRIG ...ttt eeeeaeseae 36
3-9-4 TARESUB and TAREZEOFFSETccccovvminrrecienereenee 36
3-9-5 Functions with multiple calling modes............................. 37
3-10 BBIBEATE D EE .ottt 38
3-11 EBERERBVEBEIRBIE ..o 51
3-12 Calling FCM FUNCHION........coiiitriteerteenctresecesteeseeseseses e saeessesessanees 55
3-13 BRIBIUETRTEIH ..ottt et s st st sens 57

M-Series PLC Strctured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Manual for the FATEK M-Series Structured Language ST
Preface

Before using the product, be sure to read this Manual carefully in order to get familiar with and
understand its content. Should you have any questions or comments, please contact the FATEK

distributor for detailed warranty services and responsibility limit.

1
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Precautions on Using the Product

Compliance with the application-related conditions

The user shall evaluate the suitability of FATEK product and shall install the product in the
well-designed equipment or system.

The user needs to check if the system, machinery or device currently used is compatible with the FATEK
product. If the user fails to confirm the compatibility or the suitability, then FATEK shall not be liable for
the suitability of the product.

When required by the customer, FATEK shall provide correlated third party certification to define the
value rating and the application restrictions that will be applicable for the product. However, the
aforesaid certification message shall not be considered as sufficient to determine the suitability of the
FATEK product, the final product, the machine, the system and other applications or relevant
combinations. Described below are certain applications that should be cautiously treated by the user.
In spite of this, the content described below shall neither be considered as having included all of the
intended product purposes nor suggesting that all of the following purposes shall be entirely suitable
for the product. For example, outdoors use, use in an area subjected to potential chemical
contamination or electrical interference or used under conditions or functions not mentioned in this
Manual or used with the system, machine and equipment that may create risks to life or properties.
Before working with the product, the user will be required to check if the entire system is marked with
a hazard sign and shall select the design that can ensure the safety such as the backup design, etc.
Otherwise, the user shall not be allowed to use the product in the application that will present
personnel and the property safety concerns. In no event shall FATEK be liable for the specifications,
statutory regulations or restrictions that will be used by the customer in the product combination or
the product operations.

When using the CPU Module, FATEK shall not be liable for the programs edited by the user or the

resulting consequences.

2
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Disclaimers

Dimensions and weight

The dimensions and the weight specified in the manual are nominal values only. Even if provided with

the tolerance, they cannot be used in the manufacturing purposes.

Performance data

The data specified in this Manual mean that the performance data obtained under FATEK' s test
conditions are provided for the user to confirm its compliance only. Therefore, the user is also required
to consider the actual application conditions. Therefore, actual performance shall be defined

according to the content of the guarantee and the limit of responsibilities established by FATEK.

Errors and negligence

The content of this Manual is provided through careful checking process and is considered as correct.
However, FATEK shall not be liable for the errors or the negligence that may be found in the text,

printing content and proofreading.

Change of specifications

The product specifications and accessories may be subject to change along with the technical
improvement or other reasons. In the event that the published specifications or performance need to
be changed or where significant structural change is required, FATEK will change the model number of
the product accordingly. If certain specifications of the product have changed, then FATEK will not give
the notice under the following situation: when it is required to use a special model number or create
particular specifications in order to support the customer’ s application according to the instructions
given by the customer. To confirm actual specifications of the product to be purchased, please contact

the local FATEK distributor.

3
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Precautions for safety

Signs and meaning of safety precautions

The following signs will be used in this Manual in order to provide precautions that will be required for
using the M-Series PLC safely. These precautions are extremely important for using the product safely.
Please read the safety precautions carefully in order to get familiar with and understand the content and

the meaning of the aforesaid instructions.

2 Means a potentially dangerous situation that will result in death or
Warning

serious injury if not avoided. In the meantime, it may also lead to

serious property losses.

Means a potentially dangerous situation that may result in minor or
Caution

medium level injury or property losses if not avoided.

Means operations that must not be executed.

Means operations that must be executed.

Means the precautions relating to hot surfaces.

Means the precautions related to the wiring, grounding and electrocution of the electrical

2 Means general precautions.

system.

4
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Warning

Do not attempt to dismantle any module or touch the internal side of the module
when it is under energized status or it may lead to electrocution injury.
Do not attempt to touch any terminal or terminal board when the module is under 2

energized status, or it may lead to electrocution injury.

To ensure the system safety in order to avoid abnormal actions that may be caused by
man-made external factors or false actions resulting from the faulty PLC, it is required
to install the following safety measures in the external circuit (not within the PLC
procedure); otherwise, it may lead to serious accident.

The externally controlled circuit must be provided with emergency stop switch,
interlocking circuit, limit switch and similar safety measures. The PLC will stop
outputting the signals when encountering major failure alarm during the operations.
However, the errors in the I/O controller and the 1/O register as well as other
undetectable errors will still trigger unexpected actions. To deal with the aforesaid 0
errors, you are required to install external safety measures to protect the system safety.
If the output relay is jammed, burnt or if the output transistor is damaged, then the PLC
may still maintain its output at the ON or OFF status.

To solve the aforesaid issues, it is required to install external safety measures to protect
the system safety. By installing the corresponding safety measures in the system and
the equipment, it allows you to maintain the safety of the entire system in spite of the
fact that communication errors or false actions have occurred during the operating

process.

The user must take corresponding failure preventive measures in order to ensure safety

when the signal line is damaged or when the power is instantly disconnected or when 0
the signal is wrong, missing or abnormal as may be caused by other reasons. If failing
to taking the appropriate measures, it may lead to improper operations that may result

in serious accidents.

5
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Precautions

Do not touch the power module when the PLC is under energized status or when
the power source is disconnected. At this time, the power module might still

present extremely high temperature that can cause a scorching injury.

When connecting with the terminal board of the power module, the cable should
be secured with the appropriately sized Ferrule. If the cable is loose, it may lead to

burning or the failure of the power module.

The online editing shall be allowed only after confirming that the extended PLC
cycle duration will not result in any adverse impact or the system may not be able

to read the input signal.

After confirming that the 1/O terminal is safe, you may transmit the required

> B> @ P

parameters to other terminals such as PLC setting, I/O table and I/O register data,

etc. Otherwise, it may lead to unexpected actions if transmitting or modifying the

aforesaid data before that.

6
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Precautions for Use

When using the M-Series PLC, please observe the precautions provided below.

Using the power

® Please use the voltage specified in the Manual. Incorrect voltage will lead to false action or burning
damage to the equipment.

® |f the number of the module being connected exceeds the current rating of the power module, you
may not be able to start the CPU module or other modules.

® Please use the designated power source and then supply the power according to the specified
voltage and frequency rating. Special attention should also be given to the location subjected to
unsteady power supply, as incorrect power supply may result in false action.

® Before starting any of the following operations, be sure to disconnect the PLC power; or it may lead
to false action or electrocution injury.
(1) When installing or dismantling power module, I/0 module, CPU module or any other type of
module.
(2) When connecting cables or executing the system wiring.
(3) When connecting or disconnecting the connector.

® When using the power module, be sure to observe following precautions.
(1) The voltage applied at the equipment output point or the connected load shall not be higher
than the rated specifications established for the power module.
(2) If it is required to put aside the power module for over 3 months, it shall be stored in a cool and
dry location in order to maintain its function at normal status.
(3) If the power module is improperly installed, it will result in the accumulation of heat as to cause
the aging or the damage of the component within. Therefore, it shall be properly connected and you
are also required to use the standard installation method.

Installation

® Do notinstall the PLC at the location near a high frequency noise interfering source.

® Confirm that the terminal board, the connector, the memory card, the peripheral communication
wires and other buckle-mounted devices are latched in position. Improper latching will result in false
action.

® After connecting to the adjacent module, the buckle at the top or the bottom must be securely

locked (ie, properly latched). If failing to lock the buckle tightly, the module may not be able to

7
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

achieve the intended function.

Wiring

Please follow the instructions provided in the Manual in order to execute the wiring operations
correctly.

Before connecting the power, please check the setting status of all wires and switches. Incorrect
wiring may result in burning damage to the equipment.

After checking the installation position, you may start installing the terminal board and the
connector.

During the wiring process, the label should be tagged on the module. If you tear off the label,
foreign mattes may get into the module as to cause a false action.

To ensure normal heat dissipating function, please tear off the label after completing the wiring
operations. If retaining the label, it may lead to false action.

Please use an EU-standard terminal to execute the wiring operations. Do not connect the terminal
with bare stranded wires. The aging or the breaking of wires may result in burning damage to the
equipment.

The voltage applied to the input module shall not be higher than the input voltage rating or it may
result in burning damage to the equipment.

The voltage or the load applied to the output module shall not be higher than the maximum switch
capacity. The over-voltage or the overload may result in burning damage of the equipment.

Do not drag or bend the cable excessively. Such action may cause the breaking of the cable.

Do not place any objects on the cable or other type of wires or it may cause the breaking of the
cable.

Please set the grounding wire correctly for the power module and communication port to avoid
communication error and equipment malfunction caused by noise interference.

It is recommended to use M series dedicated AC power modules to supply power to MPLC related
modules.

It is recommended to use twisted-pair shielded cables for communication cables and ground them

properly.

Operating

Before supplying power to the MPLC to start the operations, ensure that the setting of the data
register is correct without any mistakes.

Before executing any of the following tasks, confirm that it will not bring about any adverse impact

8
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

on the system; otherwise, it may result in unexpected action.

(1) When changing the operating mode of the PLC (RUN Mode/STOP Mode).

(2) When executing compulsory enable/ compulsory disable for any of the data retained in the
register.

(3) When changing the present value of any bit or setting that has been logged in the register.

Do not attempt to dismantle, repair or modify any module; or it may result in false action, fire or
electrocution.

It is required to protect the PLC from falling or from excessive vibration or impact.

If the I/O is located at the "ON" position, when switching the “RUN Mode” to the “STOP Mode/"
the system will set the PLC output at the “"OFF” position and then all output actions will be
disabled. Please ensure that the external load will not generate hazardous factors during the
aforesaid process.

If the CPU module stops running due to catastrophic error, please set all of the output points on the
output module at the "OFF" position. The output status will be retained after being set as the
holding-type memory configuration parameters.

If the status monitoring pages or the parameters are improperly set, it may result in unexpected
action. Even though the status monitoring pages or the parameters are correct, it is also required to
confirm that the controlled system will not be subject to adverse impact before starting.

When applying maximum level of voltage or when the power supplied to the operating switch is
interrupted suddenly during the Insulation Strength Test, it may result in the damage of the CPU
module. In this case, please use the variable resistor to increase or reduce the voltage level gradually.
Before conducting the Withstand Voltage Test or the Insulation Resistance Test, please separate the
wire grounding terminal of the power module from the functional grounding terminal. Otherwise, it

may result in burning damage to the equipment.

9
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Precautions for the Application Environment

Please follow the instructions described in this Manual for carrying out the installation activities
correctly.

Do not operate the control system in any of the following locations:

(1) The location exposed to direct sunlight.

(2) The location with temperature or humidity exceeding the specified range.

(3) The location vulnerable to dewing effect due to abrupt temperature changes.

(4) The location exposed to corrosive or combustible gases.

(5) The location exposed to dust (especially iron chips) or smoke.

(6) The location exposed to water, oil or chemicals.

(7) The location vulnerable to impact or vibration.

When installing the system in any of the following locations, appropriate and effective preventive
measures should be taken:

(1) The location exposed to electrostatic or other type of noise.

(2) The location exposed to strong electromagnetic field.

(3) The location that may be exposed to radioactive pollution.

(4) The location near the power supply source.

10
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Understand Structured Language ST

1-1 Features Of ST LANGUAGEccnrereereeeesesssssmssssssssssesssssssssssssssnnns iR BARERER -
1- Adding ST Language Program.......eereeeoneeeeeenssesssssessesessenns HR! HRTEREE

11
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

1-1 Features of ST Language

In the early days of automation control, when editing the logic of the programmable logic controller, it
was necessary to insert the program short code (Mnemonic) similar to the combination language into the
controller through the writer, and the action required by the project has been achieved. Following the
evolution of the industrial environment, The control loop Ladder Diagram (LD) was developed to express
the logic of the program, so that operators who are not good at writing programs can write and control
PLC in a graphical way.

The logic that the current PLC can control and run is becoming more and more complex. In addition,
writing programs has become more and more popular. PLC programs written in text have gradually
become popular, which has led to the creation of programming syntax similar to Pascal and C. As long as
learned, people in the information field can easily start programming.

Nowadays, more and more people use structured language (ST) to develop programmable logic
controllers, making structured language (ST) one of the most popular automation development tools

today.
Mathematical Processing

Mathematical instructions and comparison instructions can be described like general expressions.
mMultiple operations can be written on the same line

It can be described concisely using arithmetic expressions (+, -, etc.), so ST programs are easier to
understand than ladder diagrams.

Program Example:

Substitute the average value of RO~R2 in R3.

R3=(RO+R1+R2)+3

ST
R3:=(RO+R1+R2)/3;
LD
NOOO ‘ M9133 ’ ' ' ' SN 24 SUM S—
‘ _| = EN- S : RO
PLC working
mode . .) i) . N <)
D R3
7 S—
EN- Sa: R3 tD=0-—
Sb: 3
-u/s{ D : R3 LERR—

12
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

Complex Information Processing
The control program can be written through syntax such as “if" or “forwhile” Compared with the
ladder diagram, it can more concisely and clearly describe the complex branch or loop processing of the
execution content according to different conditions.
Program Example
Set 0 to 3 in R1 according to the value of RO

When 1~99:R1=0

When 100 or 200: R1=1

When 150: R1=2

In case other than above: R1=3

ST

IF RO>=1 &R0 <=99 THEN
R1:=0;

ELSEIF RO=100 or R0O=200 THEN
R1:=1;

ELSEIF RO=150 THEN

RO ’ ’ GENGTS—
En-| s : 0

29
; ; ; D : R1

-
Voo
) -
, =
Lol =1
iy

[=
A ow

—170 RO —
EN— 5 : 1
= 100 5 =
:J.Fo; RO :
= 200
—170 RO —
EN— 5 : 2
= 0 D R1

5 : 3

EN—

—174 RO — : 175. RO
"

a= 1 == EE}
L R . _ D R1
—17o. RO —

- 100
—170. RO —

- 200
—170. RO —

13
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

1-2 Adding ST Language Program

Establishing a new Program

ol bl > .0--31
-

Project vesigic,

System Configuration

Project Management

14
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

ﬁ Project Information

Project Name Untitled

Description

Model Series M Series -
Model Name ME3C6-1616 -

Program capacity 40K Words (20 KBytes), 16 points 24VDC
digital input (all high-speed 200KHz, HSCx8), 16-point
transistor output (all high-speed 200KHz, HSP50x4), 2 R5485
ports, 1 USE Type-C Port, 1 Micro-50 card slot, 1 Ethernet
port(Modbus User-Defined: Master/Slave), 1 physical Run/
Stop switch, 2048 points DIO, 256 points AIQ, 2 channels 12-
bit analeg input, 1 EtherCAT port(2 Axes, Helical interpolation
+ E-CAM).

+| Calendar

Program Language | Structured Text (5T) =
Ladder (LD}

Example of creating MainUint/SubUnit(ST):
Right click on [Main Program], or [Sub Program].
Select [Main Program Add] or [Sub Program Add] and a dialog box will pop up.

“ . Program Unit

> B oM E Main Program Add
> [# Sub Pr Relocate Main Program
P Interrupt Program
= FB Program

Program Unit

= :.:. Main Program
> Bi MainD

#¥ Sub Program Add

Relocate Sub Program

Select [Structured Text(ST)] and add the corresponding program.

15
M-Series PLC Structured Language ST User Manual

Chapter 1 Understand Structured Language (ST)

"= Mew Program Unit

Program Unit Mame Main1

Language Structured Text (5T) =

Ladder (LDY)
Structured Text (5T)

Example of creating an interrupt program (ST):
Click right mouse button on the node of the special program.

Interrupt Program Add
> Bl subD

P Interrupt Prooran
& FE Progra Interrupt Pregram Add

L S
2 Commen Relocate Interrupt Program
® Program Unit Lomment

Select the interrupt signal and the program type (ST) to be processed.

B rew Program Unit ? x

Program Unit Mame =T1000

Language Structured Text (5T) =

Interrupt Type STMIOI =

Hardware Time Tick : Interval from Tms~9ms,

0K I [Cancel

16
M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

User Interface of Uperlogic ST

1
M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-1Interface Overview

Offline Edit - &8

~ Options Help *

Basic
Timer/Counter
Asithmetic
Data Movement
Code Convert
PID Control
)

IF

= T —
Commands <I nUnit { Hain JRon:s, Col:2

Watch Dog Timer

High Speed Timer/ Counter
Rap/Soak

Communication

Loop BREAK
Loop EXIT
LBL
GoTo

CALL Table Manipulation
Meatrix Manipulation
NC Positioning
Interrupt Control
Floating Point Number
Module Function
Motion

IF M@ OR M Memory Address i

Register Type |Bit

END_IF Register x

Address o

MO :=R_TRIG(S:=M3

i

00[01] 0203 04] 05 [06 07 08 [|+
(i o o o o o o o
Doooooooo [I

[k

5
i

(i o o o o i o o
(i o o o o o o o e
Oooooooool,

“JgE]

R_TRIG(S:=M5) AND M88

Project Management | Module List

4 Ovewrite NOR:1C:1 Not Syntax Check Doc U:0 F:32767 MTIMB(M: 0, U: 16, F:4079)][REG(U: 0, F:512)]

A. Forall ST programs in the current project, double-click the name with the left mouse button, and a

new editing screen will be selected in the middle.

1. Display the currently available ST syntax and FCM-related information. Double-click the field and
the corresponding template will be inserted into the program.
2. Ifthedisplay is grayed out, it means that the command cannot be used in the current text

3. Theright border can be dragged to adjust the width, or click the button in the upper right corner to
minimize or restore .

C. The current category and name of ST. MainUnit > Main®
D. The current row and column information of the cursor. I YMKSL Y

E. Smart pop-up reminder window, which is convenient for users to prompt when typing.

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

ReadWriteFileReg [160]
SWDT [91]

This pop-up window will follow the user’ s input and display the automatically detected prompt program
fragments in real time, including available labels, variables, calling functions, etc. Matched strings will be

displayed in orange in the window (as shown above).

Since not only the name will be searched, but also the annotations behind the search (the display priority
is lower), so in addition to directly searching the name of the function, you can also enter the relevant text

of the annotation, such as the function ID (as shown below).

In this way, you can use the mouse to double-click, or use the up and down keys to select the program

fragment you want to insert.

F. Callable system commands can be double-clicked or dragged into a text editor

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

it Table | Sta ent | Tag Broject

. :

Basic
Timer/Counter

Code Convert
PID Control
o
Watch Dog Timer
> High Speed Timer/Counter
> Ramp/Soak
Communication
Table Manipulation
Matrix Manipulstion
NC Positioning
Intesrupt Control
Ficating Point Number
Module Function
Motien

Global Tag
Defautt Tag

ProjectManage., Modul. MemoryAd...
& Overwrite NOR1C1 Not Syntax Check. Doc U:32 F:32736 MTIMB(ME: 0, U: 16, F:4079)][REG(U: 0, F:512)] use

Drag this area to display the area label. It will be more convenient to modify the program based on

the label when writing ST programs.
b= tdE®-

Project

Project Management
~ @ Untitled [M
S

168it-Ulnt

sty |

Commands it > M Row:1, Col:l
Script
IF

IF_ELSE
IF_ELSEIF_ELSE
F

This area supports online editing mode and can be used for program debugging and correction.

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-2 Supportive Keyboard Instructions

Ctrl + C Copy

Ctrl +V Paste

Ctrl + A Select All

Ctrl + X Cut

Tab Insert Tab

Multiple Select+Tab Select multiple lines and add Tab at the same time.

Shift + Tab Back Tab simultaneously according to the cursor or the number of

selected rows.

Ctrl +F A search window appears at the top right of the screen, and the

current text can be searched.

Ctrl +/ Comment/Inverse Comment in batches according to the number
of lines selected.

Ctrl + '+ Enlarge the whole ST fonts
Ctrl + - Shrink the whole ST fonts
5

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-3 Sytem Mode

There are currently three modes of the system software:
ST Editor diaplays three status correspondingly.
1. Offline Edit(The top of the ST editing window displays a black background)

Miaing

END_IF

IF R_TRIG S
=Tag_FlR188 , D:= Tag_FLR162 ;
END_IF

R10:=FCOS| S:=Tag_FLR1@@ R100;

2. Online Monitor (Read-Only, not for editing)
(The top of the ST editing window displays a cyan background)

END_IF
IF R_TRIG S:=M2 = THEN

=Tag_FlR100 , D:= Tag_FlR102 ;

S| S:=Tag_FLR10@ R100;

3. Online Edit(The top of the ST editing window displays an orange background)

Maind

Commands <
- S:=MB | THEN

Tag_F1R100

IF R_TRIG' S:=M: THEN

5:=Tag_FLR180 , D:= Tag_FLR182 ;

0S' S:=Tag_FLR18@ R160;

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-4 Syntax Check

ST files must be transferred into programs available for PLC running through syntax check.

Usually when writing, users can click the button shown below to manually compile to see if it is correct:

"_"-'”' E = = td0H-

Project Designer Wiew

PLC Toale &
)
FHiH R ., -
* ¥ | & [\ se 5

Upload Download Syntax Offline Online Online
eck Edit Monitor Editing

Operation Syntax Check | Mode

If there is an error or a warning prompt, there will be a pop-up window display:

SubUnit = Sub®

1 ToBIN S:= , D

Error

Warning 9

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

The detailed content will be displayed in the window as shown in the figure below, double-clicking the

field will jump and prompt the wrong line numbers.
SubUnit > Sub@

1 [ToBIN

Syntax Check
Type
[5T] Duplicated Coil. [MainD, LOD8](Coil:SIMO)
t. [ST] Contact is open. [Main0, LO11]
. [5T] Duplicated Coil. [MainD, L014](Coil:SIMO)
t. [ST] Contactis open. [Main0, LO17]
I [5T] [Main0]:Convert Ulnt16 literal to Int16 [R:22,C:7] Row:22
1. [ST] [Main0]:Convert Ulnt16 literal to Int16 [R:23,C:7] Row:23
I [5T] [Main0]:Convert Ulnt16 literal to Int16 [R:24,C:7] Row:24
I [5T] [Main0]:Convert UInt16 literal to Int16 [R:25,C:7] Row:25
o [ST] [SubO]:Parameter [S] Missing R-Value [R:1,C:9] Row:1 -

Every time the system downloads, it will automatically run the checking procedure of the current text
during the trial run to ensure that the syntax is correct. When there is an error, it will not be able to

download or trial run.

M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-5 Mouse hover prompt

SRR R

A TREBURERSENASE ZEBEEZHIETRNAXFT LER
RARENTH - A TFEAEESEANRENRER

A. —RZIER T
EERZRRNSZEIEISE 1.

EHERZEHRIBRERIE .
IF M1 THEN
$STM1_PV:=500;
[UInt16][R35437] : ©

END_IF
EBHENEE o EEHSEMBERENEEETEBN
Bool BURIZLEE On/Off 1]
HFER: HIREEHGAHEBHNHFIEN

IF M1 THEN
$STM1_PV:=500;
$STM1_CTRL:= ;

END_IF [Bit]1[Mo167] :

HS2 L B BRINBEMR - RBEAXAFTER=ZRINBET SEIEIE

: ==, dHEBEG| |- n %4
!II:%\! 3:1‘3 =

fEiRK -

9
M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-6 Add observed variables

ERERERA LEREND EXFHES LARBEGRERDEEILUS
B EMIREENER - AEERXAFEEZHEEMERERNNERSP -

MrIE:

EZEOREMBREARENRLBSMAREEHIEREPIVEIS -
wHIMEFEEERNAZIN—8 - SI28EHN—8

FE0 = Maind *
Commands €| mainUnit > Maine

iF M1
e IF M1 THEN
IF_ELSEIF_ELSE $§STM1_PV:=
CASEOF o=
e $STM1_CTRL:=
FOR END_IF
Repeat I
Loop BREAK 6 E5 Add Al to Status Page * £ StstusPagel
LDDEBEZL'.IT IF M2 THEN
GOTO El NewPage
CALL INTEnable! LB:= INT_STM1I ;

ELSE

IF_RisingTrigger INTDisable! LB:= INT_STM1I);
IF_FallingTrigger END IF

B2 AR BEARASZSHMEENZERER T

HainUnit = Main®

IF M1 THEN
$STM

$STM 5] Add to Status Page * B StatusPagel

Add All to Status Page L4
END_IF B J F] NewPage

10
M-Series PLC Structured Language ST User Manual

Chapter 2 User Interface of Uperlogic ST

2-7 Quick mouse and keyboard operations
ST X PRIBIR M S RA RN REEEE 2 E RINARE

A. ENELT
BERINETHERMNM S EIEINGZT - WA E FeE T EEEINET

9 INTEnable LB:= INT_STM1I ;
10 ELSE

11

12 INTDisable' LB:= INT_STM1I ;
13 END_IF

14

15

16 ReadwWriteFileReg EN:= R_TRIG M®©

17 R_W:= ,
INC:= M1@

B. #EXNN Tab / BFR Tab
E1THEYR TN Tab:
HEIEE B ITRIER 1R Tab 125
Z1THEXR AN Tab:
EMZTENEEBIZ Tab - AIFRATEIS A —IN—{E Tab TR
/% 17%[% Tab:
BIRERNZITERMUE - SAEENZT - BI% shift+Tab ISR — A4
HE(Back-Tab)
C. sEfR I RE R
SATRERMR T OIUER "(*", "*)" EMERFIRRIEZIN - ZIE ctri+/ RETETE
{RFRTERYTT - S HAIFRENRITRIERFNE // FREES—1TXFHE -
ThigEg.
REENTHSEAET—1THIRIRA// &5k - BIFRA1TER I8/ /516
HUHEEE:
FRERMTRE —THRREER//FH - MEETHIRBIRLHE

11
M-Series PLC Structured Language ST User Manual

Basic Program Structure of Uperlogic ST

3-1 INEOAUCTION ..evttetieeeeeessssss s sessssssssssssss s sssssssssssssnnns fRER! EARTE
322 SEATEMENT cveeeeeieeiss s iHER! ERE
3-3 EXIDIESSION. ..ccovvvvvmmmmreseneeseeeeeeeesssssssssssssssssssesssssssssssssssssssss s sssssssssssssssssnns f5ER! EARTE
3-4 Operand and OPEIator ... ssssessssseee fEaR! BRTE
355 COMMENT ceceeesssssss e ssssssssssssss s iR MARER
3-6 FIOW CONrol @and LOOPccceuueeuummmmmnsenessereeressssssesssssmmsssssssssessssssssssessnnns iR EARE
3-7 Variables and Data TYPE.......vereveeeeeeeeeeeeeeseeseesissssssssssssssssssssssssssons fHER! RIKRES
3-8 Using PLC Register and MemOTIYoceecomerveemeeeeeeeeeeeeeeeevesessveenne fEER! BARTE
3-9 Calling Sytem Built-In FUNCHIONScooervvveeeeereeeeeeereseeesee s iR MKRES
3-10 Calling FCM FUNCHON ... fEER! BRTE

M %31 PLC #181t

zh=

===

o
I

o o
I

I
#

I

O

L B
DM DM O DM
B o8 8B 8

&
O
&

ST fER

3-1 Introduction

This chapter will explain the methods of applying basic ST Language programming.

3-1-1 Character Encoding

ST editor supports Unicode(encode in UTF-8). Supports basic characters and most symbols in Japanese,

English, Chinese and other languages that appear in program editing. In addition to being used for

comments, they can also be used in labels or program and table names.

3-1-2 Composing Units

The ST language uses the combination of the following symbols to describe the program.

will explain in detail.

Later chapters

Type

Example

Referrence

Computing Symbols

++-+*/~AND-&+OR-|+XOR-MOD -
<=+ >= <> ++--2<<+>> NOT+:=

()

3-4 EE T
(Operand)
BUEE F

(Operator)

Keywords that control syntax

(Standard identifier being defined)

IF ~ ELSEIF ~ END_IF

CASE - OF ~ END_CASE
WHILE - FOR ~ END_WHILE
END_FOR

LBL

GOTO ~ CALL -

LBL_F ~ GOTO_F

3-6 MAEIEH
EAiEpE

Defaulted as “signed int”

Ex: RO:=1; RO:=-2;

Identifier Variables, Hardware X0 ~Y0-~M100-RO~DRO- ~DO-DDO - | 3-x ;014
Register, 10 Discretes, IMO...etc
Indirect Address...etc. Tag (Register any name)
(Labels, Elements...etc.)
Function Call (FB) 1. System built-in Function 3-10 oy
2. (User-created FB Function library) FCM R &
Constant Interger: 3-7-4 22

M %31 PLC #181t

sa= ST A

“Unsigned int”
Ex: Tag0:=0xFF;
String: Use only on Label
Goto, LBL...etc
Bit (Bool) Type: TRUE - FALSE
Float: 32-bit Float Constant
ex: TagFloatl:=1.1;

1. The start and end of Function Call
ex: FunO (S:=R0, D:=R1);

2. The enforced priority of a general
operator

RO:= (1+R0)*R2;

Delimiter " appears in CASE OF 3-6-3 Case
okR " ZERASEEEER Of
Left/Right Round Brackets NG 3-4-1()

RETURN

Used in Sub-program or FB.
To immediately leave the program

section.

" the end of the statement

To mark the end of a sentence running at

one end.

Spaces, newlines and comments can be freely inserted between each symbol.

Type Example Referrence
Space Space (Halfwidth/Fullwidth), TAB | -

Newline Newline Code -
Comment /o (F.L)

M %5l PLC #181ERES ST A

3-2 Statement

“Statement” is the most basic execution unit in ST Language, which represents a complete work to be

executed. A complete statement is not limited to the same line of words; however, it must be ended with

" n

;" Inaddition, a statement is also allowed to contain multiple or multi-level sub-statement, and

u.n

regardless of the position of the statement, it must be followed by a “;" symbol at the end.

IF MO THEN R10 := RO * (R1 + R2);

| Statement !

END_IF

A complete statement is equivalent to a ladder diagram section (NETWORK) with complete functions, and
it must be able to clearly express one work. Take the statement in the below program as an example, the
work it performs is to compute the content value of each device according to the order RO*(R1+R2)
expressed in the mathematical formula, and assign the result of the operation to the R10 device. However,
although the content in the red frame in the figure below is legal, it is not a complete statement but an

Expression, which represents only a value of a mathematical computation, but not a specific work.
MainUnit = Main®

IF M@ THEN

RO

END_IF

Shown below are some statements of Uperlogic ST Language:

MainUnit > Main®@

RO = DO 90 ; Distributive Statement

IF RO < THEN Conditional Statement
MO := -
ELSE
MO :=

END_IF

WHILE DO <> 10¢ Do-While Loop Statement

END_WHILE

Function Block(FB) Call Statement

Read_Bit(PAG®:=R10,PA1:=R20);

IF R_TRIG (S := X8) THEN
RegSwap (PA@ := R10 , PAl :
IncGenerator (PAO :=)

END_IF

M %5l PLC #181ERES ST A

Type Content Example
Distributive Statement Substitute the result on the right =
into the variable on the left.
Flow Control | Conditional Statement (IF, CASE) | Select the execution syntax based 3-6-1
Syntax on the condition.
Do-Whlie Statement (FOR, Execute multiple times depending 3-6-2
WHILE) on the end condition. 3-6-4
Sub-program | Function Block Call Statement Call FB 3-14
Statement Label Statement Call LBL 3-6-6
Toolbox Statement Convenient statement to execute
toolbox instructions
Flow control syntax can be layered.
(It can be used in combination with conditional statements and do-whlie statements))
WHILE RO DO Outer Loop
RO := RO
e RO
MO
Hois Inner Loop
MO
END_IF
END_WHILE
M %35l PLC #18{EEES ST AFM

3-3 Expression

“Expression” is a very important element in the structure of a statement and it represents a “value” ,
such as a Boolean value of TRUE or FALSE, or an integer value of 20 or -5. It can be an operation
expreesion or a constant, and of course it can also be a variable symbol or device, depending on
occasions. The following are some examples of expressions:

m MO & M1 (Expression of Boolean) represents the Boolean value between the computation of MO and
M1.

B MO = FALSE (Expression of Boolean) represents whether the condition “M0O=FALSE" is true. When
the value of MO is ON, the Boolean value represented by this expression is FALSE; but when MO is
OFF, the Boolean represented by the expression will be TRUE because the condition is established.

m MO (Expression of Boolean) directly takes the value of MO as its representative Boolean value. When
the value of MO0 is ON, the Boolean value represented by the expression will be TRUE, and when MO
is OFF, the Boolean represented by the expression will be FALSE.

m D1 + D2 (Expression of Value) represents the result of adding D1 and D2.

B DO (Expression of Value) directly takes the current value of DO as its representative value.

m D2 =DO0 + D1 (Expression of Boolean) is a relatively confusing Boolean expression, which represents
whether the condition “D2=D0+D1" is true. When the result of adding DO and D1 is equal to the
current value of D2, the expression is TRUE; if the result of adding of DO and D1 is not equal to the
current value of D2, the expression represents FALSE.

m D2:=DO0 + D1; (Statement, not Expression) is a complete statement rather than an expression, which
represents the meaning of the work “Assigning the result of adding DO and D1 to D2" ; but this
statement is also composed of the two expressions “"D2" and “D0+D1”

Position of the Expression used:
[MainUnit >Maine 0000000000 |
RO = DO 100; Right side of Distributive Statement

IF RO < HEN Condition of Conditional Statement
MO :
ELSE
MO :

END_IF

WHILE DO <> 1f Condition of Do-While Loop Statement

DO := DO

END_WHILE

Read_Bit(PA®:=R10,PA1:=R20); Setting Parameter of FB

IF R_TRIG (/S := X8| 3—THEN Parameter Condition of Conditional Statement
RegSwap (PA@ := R10 , PAl := R20);
IncGenerator (PAQ :=)z

END_IF

M %5l PLC #181ERES ST A

The below table shows Expression types:

Type Data Type of Expression (Computing Example
Result)
Operation | Arithmetic Interger, real number...etc. RO+R2
Expression | Expression (according to computing elements)
Logic Expression Boolean (TRUE/FALSE) RO AND R2
Compare Expression | Boolean (TRUE/FALSE) RO >R2
Basic Variables, Constants | Defined data type MO.R0.123.TRUE
Expression | Function Call Data type of return value FcmO(PAO:=,0UTO=>);
Expression

3-3-1 Opearation Expression

This section uses examples to explain how operation expressions are presented in the ST environment
and the LD environment.

3-3-2 Arithmetic (+ -+~ *+ /)

The four operation symbols are described using the same operation symbols (+, -, *, /) as the general
arithmetic symbols.

For operations that cannot be described in LD diagrams, can be described concisely through single-line
expressions.

Program Example:

Substitute the adding result of R0-R2 in R3
R3=R0+R1+R2

ST
R3:=RO+R1+R2;
LD

B When adding multiple operration expressions with one statement, the operation symbol with the
highest priority will be processed. For the priority of the four operation symbols, please refer to the
chapter on operands. When there are multiple operation symbols with the same priority, the

operation starts from the leftmost operation symbol. -

M %5 PLC #18{ERES ST A FM

Advanced Operation (Exponents)

Exponential or trigonometric operations using general-purpose functions.

Type Function Name Example
General Expression | ST
Absolute Value ABS [X] ABS(D:=);
Square Root SQRT VX FSQR(S:=,D:=);
Trigonometric Functions SIN ~ ASIN B=SIN A FSIN(S:=, D:=);
COS ~ ACOS B=COS A FACOS(S:=(* %),
D= (* %),
MD:= (* *);
TAN - ATAN B=TAN A FSIN(S:=, D:=);

Program Example
Find the length of the hypotenuse of a right triangle.

=)

A

C = “r'll L(1'.|I.2 T B_J :I

ST

(EFZ BT ot M Tag =R AL Al
ex: Tag0= Float DRO - Tagl= Float DR6)
R6:=R2*R2+R4*R4;

ltoF(S:= R6, D=> Tagl);
FSQR(S:=Tagl, D:= Tag0);

M %5l PLC #181ERES ST A

MO
—lt

EN—|

—U,/5

EN—

—U/5

EN—|

) 3p, (*
sa: ;¥4
5
Sh: R2
5
D : R10
25

€ECNG
sa: R4
5
sh: R4
5
D : R12
25

11. (+
sa: R10
25
Sh: R12
25
D : R14
50
s R14
50
D R6
50

508, FSQR ¥

s : RG

50

D : RO
7.0710678

Fo=0—

lD<0—

lo=0—

FD<0—

Fo=0—

ER—

FERR—

FERR—

M %3l PLC #1B{EEES

ST fER

3-4 Operand and Operator

Operands and operators are the basic elements that make up an expression. The operand refers to the
object involved in the operation, and the operator represents the operation performed. For example, in
the expression "DO + D" 1, both “D0” and "D1" are operands, andthe “+" signisthe operator. As
seen from the examples in the previous section, an expression can be a combination of a group of
operands and operators, but it can also be represented by an operand alone; while the operand can be a
device, a variable symbol or a constant

[— Operator

Tagd + DO - 1
t t 1 Operand

10
M %5l PLC #181ERES ST A

Like mathematical forms, operators themselves have a priority order for performing operations. When the

priority levels are the same, the order of the operation will be from left to right. The following table is a list
of operators in ST syntax in Uperlogic

Data Form Example of Expression Priority Level
Symbol Function Operation Result
Operand Expression Value Highest
(Expression Value)
() Prior block Not limited Not limited (DO+6)*3
To quickly add or Any value ++D0
+4,-- Any value
subtract 1 DO++
Numerical '%
- Any value Any value -DO
negative sign
NOT Logic inversion Boolean Boolean NOT MO TRUE
* Multiplication Any value Any value D0*3
/ Division Any value Any value 15/D0
Addition, Any value Any value
+ - D0+3
Subtraction
<, ><=,>= Value compare Any value Boolean DO>2
Equal, Any value Boolean D0<>2
=,<>
Not Equal Boolean MO=TRUE
AND,& “and” operation | Boolean or Value Boolean or Value MO&M1
OR, | “or" operation | Boolean orValue | Boolean or Value MO0 OR M1
“exclusive or”
XOR operation, Boolean or Value
Boolean or Value MO XOR M1
XNOR “exclusive nor” Integer \
operation
MOD Value Value DO MOD 3
>>,<< Shift right/left 1 Any value Any value DO>>1 2
Rising Edge
R_TRIG, F_TRIG Lowest
Falling Edge

m The part with the same background color have the same priority.
m AND, OR, XOR, XNOR basically do the role of BitWise (ex RO AND R1) and the result will be a value.
Unless the left and right sides are both Bool(bit) (ex. MO AND M1) types, logic operations will be performed and the result will be a

Bool(bit) value.

m No support &8&, ||, == syntax.

11

M %3l PLC #1B{EEES

ST fER

The individual operands will be introduced later.
3-4-1()

The function is the same as a mathematical formula, and the expression in the round brackets is
prioritized for operation.
EX:
RO:= (R0O+2)*3-(R2+3)*56 ; // R0=1;R2=2
RO=- 271

3-4-2 Arithmetic +, -,*,/
Operate addition, subtraction, multiplication and division for the operators on both sides.
HEMENESTTETINRERNEGE

EX:

RO:= 5+4-3*2/1;
RO=3

3-4-3 Quick Addition and Subtraction + +, --

Specifically for operand + 1 or -1
Prefix Syntax:
++(Register)
--(Register)
The same result as (Register):=(Register)+1, but the speed is faster.
PostFix Syntax:
(Register)++
(Register)--
First take (Register) value — return — operate (Register):=(Register)+1
ex:
RO:=10;
R2:=10;
R100:=++R0; //// R100is 11, RO is 11
R102:=R2++;//// R102is 10, R2 is 11

3-4-4 Value compare >=,<=> <

Compare the values on the left and right sides of the symbol. The left and right sides of two symbols need
to be of the same type to be able to compare; otherwise there will be truncate or digital missing (float
<->int)

The result will be TRUE/ FALSE (1/ 0)

EX:

MO0:=R1 >=R2; ///If Rlis greater than or equal to R2, MO will be TRUE (1)

12
M %5l PLC #181ERES ST A

3-4-5 Equal to/Not equal to =, <>

Compare whether the left operator is equal to the right operators.
The result will be TRUE/ FALSE (1/ 0)

EX:

MO := R0O=100; // If RO value=100, MO will be TRUE (1)

3-4-6 Bit shift left and right <<, >>

For the left-side value, shift left or right by the number of bits on the right side.
EX:
R10:=R0<<4; //R0=1(00000001)
RO value will be shifted right with 4 bits, and assign toR10 //R10=16(00010000)
PS. RO will not be changed

3-4-7 Negation of Operand NOT

Perform Bitwise NOT operation on the right operand.
EX:
RO:=NOTR2; // Do "one'scomplmenet” to the valuein R2 and save it to RO
R2=1(00000001) => NOT R2=-2(11111110)
MO:= NOT (MOOR M2);// MO0 OR M2 result is negated and stored in MO

3-4-8 Negative Sign of Operand -

Perform negation (sign reversal) on the right operand.
EX:
IF R_TRIG(S:=M1) THEN
RO:=-R2; //R2=1(0000000000000001)=>R0=-1(1111111111111111)
END_IF

3-4-9 Assign Value :=

Assign the right value (variables) to the left variable of the symbol.
EX:
R1:=R0O; // Move RO toR1
R1:=1; // SetRlasintegerl

13
M %31 PLC #181t

=

===

ST fER

3-4-10 Logic Operand AND (&)~ OR(|) * XOR * XNOR

Perform logic operations (Bitwise) on the left and right operators, and the result of the value will be the

same as the type of the operator.
EX:

RO:= R1ANDR2; // ¥#R1,R2WEEETATT K EEEZZ RO
// {R¥0 R1=1(00000001) R2=15(00001111) £l RO =1(00000001)
DRO:= R10 & DR12; // ¥jR10,DR12 HE{EEITUIIT K EEEZ DRO
// (&% R10=1118481(0x11_1111H) DR12=69905(0x1_1111H)
Al DRO =4369(0x1111H)
RO:= R1|R2; // ¥#R1,R2MIEEETAIT X EEFEIRO
// {� R1=1(00000001) R2=15(00001111) Bl RO =15(00001111)
DRO:= DR10ORR12; // ¥} R10,DR12 BEUEETTAIIT 3 EE7FZI DRO
// f&R%N DR10=4369(0x1111H) R12=69905(0x1_1111H)
All DRO =4369(0x1111H)
RO:= R1XORR2; // #¥§R1,R2VEUEETTIT kX EHEFEI RO
// {40 R1=1(00000001) R2=15(00001111) &Il RO =14(00001110)
RO:= R1XNORR2; // ¥#R1,R2WEEETNT RERFSH EEEFZ RO
// {BR%0 R1=1(00000001) R2=15(00001111) Bl RO =-15(11110001)

3-4-11 Remainder MOD

Operates the remainder of the left and right operands which are equaltoC' s “%" symbol
EX:
RO:= R1 MOD R2; //ROis the remainder after dividing R1 by R2

// R1=10,R2=3 10/3 BHEIZEH 3 REIEHY 1,R0=1

14
M £3I PLC #1#B{L:ES ST HARAFM

3-5 Comment

Comments are those used by program developers for easy maintainance in the future. There are
single-line or multiline comments appeared with light gray text, and these parts will be ignored by the

editor and will not generate operating data.
3-5-1 Single-Line Comment //

Ligh gray will appear after the symbol, and will not generate the operating program codes.

MainUnit = Main@

R1:

3-5-2 Multiline Comment (* *)

A continuous comment that can be multiple-line (or a single line), and the text between these two

symbols will be seen as a comment.

R_TRIG :=M3 AND M88 THEN

PS. Users can also use quick keys (Ctrl+ /) to comment on the selected rows and columns in batches

(add/remove).

15
M %5l PLC #181ERES ST A

3-6 Flow Control and Loop

When writing ST, some conditions or loop control are usually required for easier design.

Introduction as shown below:

3-6-1IF ELSE

When the expression after IF is TRUE or 1 at the end, the description after IF will be operated immediately,
otherwise the description after ELSE will be operated.
EX:
IF R_TRIG S:=M5 AND M8S THEN
R100:=
R10:=
END_IF
If M5 is Rise Trigger, and M88 is TRUE (1) , R100 = 10, and R10 = 12

I

I

Use ELSEIF if there are multiple comditions.

EX:

16

M %5l PLC #181ERES ST A

3-6-2 FOR

Repeat the instructions from FOR to END_FOR until the technology register reaches the target value. Each
time the run is repeated, an incremental value is added to the target value

PS. The incremental value BY field can be omitted (the default is 1) as shown below

FOR

END_FOR

EX:
FORDRO:=0TO 30BY2DO //DRO from 0,2,4,....etc, until it reaches to 30
R10++; // R0O=32,R10=16
END_FOR

FORDR0O:=0TO 30 DO //DRO from 0,1,2,3....etc, until it reaches to 30
R10++; // R0=31,R10=31
END_FOR

17
M %5l PLC #181ERES ST A

3-6-3 Case Of

Selection of Integer conditions:

END_CASE

It will read the value of the target register, and run after the specified conditions are fully read: the
following description (only one description can be supported).

If none are satisfied, the description after ELSE will be run

Conditions only support integer constants or constants within the range .. symbols

EX:
CASE RG OF
:R100:=10;
:R100:=
END_CASE
RO=1 //R100 =10

//3,4,56,7,89 ,R100 =11

18
M %5l PLC #181ERES ST A

3-6-4 WHILE LOOP & REPEAT

Repeat the run description until the condition is (not) met
WHILE LOOP:

WHILE

END_WHILE

EX:
WHILE RO<
++R0O;
END_WHILE
REPEAT:
REPEAT

UNTIL
END_REPEAT

EX:

NOTICE: Because of the logic of hardware running, if the WHILE does not jump out of the loop for a long
time, the PLC device will not be able to handle other O states, resulting in system errors. Users should be

careful when using it.

19
M %5l PLC #181ERES ST A

3-6-5 BREAK / EXIT

In the loop situation of FOR, WHILE, REPEAT, you can leave the loop early with BREAK or EXIT at the
appropriate time
EX:
HILE M@ DO
RO;
IF RO>= THEN
I

END_IF

END_WHILE
When RO is greater than or equal to 100, it will run BREAK and jump out of the WHILE loop.

NOTICE: Because of the logic of hardware running, if the WHILE does not jump out of the loop for a long
time, the PLC device will not be able to handle other |0 states, resulting in system errors. Users should be

careful when using it.

20
M %5l PLC #181ERES ST A

3-6-6 LBL, JMP, CALL

The LBL command can achieve the same effect as LD FUN_65, with a Label of up to 6 ASCII characters.
EX:

SubUnit > Sub®

The keywords that can be used to call Label in the ST environment are as follows:
JMP_66, GOTO (for detailed description, please refer to FUN 66)

CALL ' CALL_67 (for detailed description, please refer to FUN 67)
EX:

MainUnit > Main® SublUnit = Subg SubUnit = Subl

CALL ' ' LBL ' : LEL

CALL_e7 ' : R2:= ; RU:=

21
M %5l PLC #181ERES ST A

If you need to use tags in the FCM environment, you need to use the LBL_F - FLBL_165

instructions.

The Label keyword can only be called in FCM
GOTO_F (Label that can only be used in FB)
FIMP_166

EX:
FEB > Fem@

GOTO_F (°
FIMP_166
LBL_F ('
PAG:=
R2:=PA0O,
LBL_F ('
PAl:=
RO:=PAl
FLBL_165("
Ry:=

I

22
M %5l PLC #181ERES ST A

3-7 Variables and Data Type

In the programming language, the use of variables and data types are an important part. In order to
ensure that variables have typed characteristics, it is convenient for programmers to view and debug. ST
uses Tag (Global, Local) to give variables a specific type.

The following introduces the data types and usage supported by ST.

Precautions

If the operation result exceeds the value range that the data type can handle, the correct result
(numeric value) will not be reflected in subsequent processing.

The data type of the operation object variable should be converted in advance into a data type
within the range that can process the operation results.

Tag creation example

Labels are divided into global labels and regional labels. The label name created by the global
label cannot be shared with the regional label. It is a label name that can be shared by the entire
project. The label name created by the regional label can use the same name between different
main programs, sub-programs, and Fcm programs without affecting each other (but the
addresses must be different).

Bk IS

Project Designer PLC View
s
B s % =
Device 1/O Memory Read-Only

View Configuration Allocation Register

System Cd

Project Management
¥ @ Untitled [ME3C6-1616]
v System Configuration
'{i{ Device View
"% 1/0 Configuration
8., Memory Allocation
™ Read-Only Register
"é‘ Server Configuration
ﬁ'y Communication Configuration
V = Program Unit
v & Main Program
v B Mainn
.;, Local Tag
V (5 Sub Program
> B subo
P Special Program
& FCM Program
Vv '® Comment
Z® Program Unit Comment
¥ Network Comment
4"9 Element Comment

5 Global Tag
% Default Tag

&) System Tag

23
M %5l PLC #181ERES ST A

In order to cooperate with program operations of different data types, the following will
demonstrate how to create different types of labels.
The Rx.Dx register is defaulted to INT16, and the DRx.DDx register is defaulted to INT32 integer

variable.
EX
Double-click to select the Global Tag->Add new Tag

B - tdam-

Project Designer PLC View Tools

B, R g

Memory Read-Only Server Communication Descrete Register
Configuration | Allocation Register Configuration Configuration Allocation

System Configuration

Project Management @ Main0 X)W'ﬁg[ﬁbbal'bg] x I
v @ Untitled [ME3C6-1616]

> ‘3 System Configuration Falter plane =
> w Program Unit Name Type
P Special Program
& rcm Hrcaain 1 <Add new tag>

> '® Comment
v & Tag

System Tag
B~ YT LE

Project Designer PLC Wiew Toals

& &

Server Communication Descrete
Configuration Configuration Allocation

onfiguration

Project Management
v [§ Untitled [ME3C
tem Configuration

Mame

Filter

-a| Program Unit I:I ‘ Name Type
¥ Special Program
& FCM Program 1 Tag0 16Bit-Ulnt M
& Comment n . . Bool I
Tag |;| <Add new tag:> 16Bit-Int
Global Tag P |
it-In
Default Tag 328it-Ulnt
System Tag Float

24
M £33 PLC ##B1EiES ST ERFM

= ty¥am-

Project Designer

‘3 y guration
> ' Program Unit

2'3‘ Special Program
& FCM Program
nment
Tag
Global Tag
Default Tag

ystem Tag
Status Page

PLC

rogram Unit

Type
Tagl 16Bit-Ulnt ml 1
<Add newtag> | @ Warning e
_h lllegal address!

If the selected address and data type are not supported, a reminder will pop up to

block it.

25

M %3l PLC #5181t

zh=

EI==]

ST fER

3-7-1 Bool / Bit

As long as the data represented is a bit or a value comparison operation (ex. <, >, <> ... etc.), these results
are all Bool (Bit) type, and O or 1, TRUE, FALSE can be used here accepted as a constant representing type
Bool.
Among them, the switch of the relay is also represented by Bool/Bit (ex. MO, X0, YO...etc).
EX:
MO :

MO :

M1:=R0O<10;

3-7-2 Integer Type

There are four integer types of ST: INT16, UINT16, INT32, UINT32

INT16 16-bit integer
UINT16 16-bit positive integer
INT32 32-bit integer
UINT32 32-bit positive integer

If a 16-bit register position (ex. RO, R1..etc) is used, the system will default to INT16 data type to process; if
it is a 32-bit register (ex. DRO, DR2... etc), it will be seen as INT32.

3-7-3 Floating Point

Floating-point defined for IEEE-754.
For ST operations on floating point, it is necessary to generate the corresponding Tag first, so that the

system can know which variable refers to the register position representing a floating point.

26
M %5l PLC #181ERES ST A

Among them, when using floating-point operations, there will be some defaulted implicit behaviors. The

descriptive example is in the figure below:

s B0 < I

e

&8

wma

R

RE

||
1

&80

DRO

IF
IF_ELSE
IF_ELSEIF_ELSE
CASEOF

Wi - EE - EE -
B ARAE = iTRE i AREE =H SERE
Iggoo PmLay £9905.141 [RO] DRID +34) 63905 [R10]
R12 3k 4369 [R12]
Line1: RTAHEE 0 BUIZEAEEVEIK(ES 69905.14159
Line3: FRNICIRE o ROZRABIBEEIRR int32 MVREEE
il H7F7E DR10 R &,/ NEIREAVER 73 B & 1R 2 bR
(ex. 1EH 0 A 69905.141 Bl DR10 ABHIA 69905)
Line5: FRNEEIRE 0 UZMEEEER int16 HNEHEE

It BF % R12 R &, BB int16 MEBBEMR/NERAIER S AIS #)

B

(ex. 1Z% 0 5 69905.141 Bl R12 AAEIA 4369)

27
M %3l PLC #1B{EEES

ST fER

T EET0 < I

JEfex 2

£

my

UK S

EE

||
1

B0

Float

DRO

|—

MainUnit = T Bw0
DR14:=

P i & W #7 i wh ST
TER0 |,)

R0 R 123 [RO] DR14 i 123 R14]
EETV | trvmm | 42re0000H [RO] DRI4 | 7oAl | 0000007EH [R14)

Line 2: DR14(INT32 ISR BZBABAVERIELE - I B &I o EEEHT
(VBTSN HARTIRESRE - TEME Fun2001-> F E)

EX:
st M0 x
&z
a8 my U S RE
1 0 Float DRO
2 1 Float DR2
[,] e

>

R14:=

MainUnit = 6

D

I

©:=DR14;
FDIV(Sa:=

#E - R - Mmm -
. P = R~ o s %
i;gﬂ“’ TEil) 123 (ROJ
I*?%W TEis 61.5 R2]
28
M %51 PLC 4HE(LE= ST EREM

Line 3: Indicates that the floating-point value of Tag_FIR100 will be converted into an integer value of
int32, and there will be a position of DRO, and the decimal point will be removed (ex. Tag_FIR100 is 3.14,
and the content of DRO is 3)

Line 5,7: It will convert DR2 (INT32) and R2 (INT16) into floating-point data types, and store them in
Tag_FIR100 (ex. R2 is 3, and Tag_FLR100 will be converted to a floating-point type, resulting in 3.0.)

29
M %5l PLC #181ERES ST A

3-7-4 Constant

The table below shows the ST-supported constant types:

Bool (Bit) 0, 1, TRUE, FALSE
MO:=1,;
MO:=TRUE;
Integer Integer:

RO:=1;

RO:=-10;
Binary:

2# followed by the value of 0,1,

underscores can be used to divide groups
RO:=2#1111_0000;
Octal:
8# followed by the value,
underscores can be used to divide groups
RO:=8#243;
Hexadecimal:
16# followed by the value,

underscores can be used to divide groups

Ox followed by the value,
underscores can be used to divide groups

Scientific Tag Tag_FIR100:=1E3; //1000

Tag_FIR100:=1.2E+3; //1200

Tag_FIR100:=1E-3; //0.001

Unit Symbol G: le+9

M: le+6

Kk:1le+3

m: le-3

u: le-6

n:le-9

30
M %5l PLC #181ERES ST A

RO:=1k;
DRO:=1M;
Tag_FIR100:=1m;
Tag_FIR100:=1n;
Tag_FIR100:=1uy;

String Use ASCII string quoted by “ symbol
(Currently only the Label command | —ccoommemeeeeee
can be used) LBL ("my_lab")

31

M %31 PLC #181t

zh=

===

ST fER

3-8 Using PLC Register and Memory

In addition to using the created Tag to call the corresponding register, users can also directly enter the

name of the register to perform operations or flow control, as long as the data type of the register is
single word 16bit ---> INT16 double word 32bit ---> INT32

EX:

R29:=100;
V:=19; //E$EE UL
R200:= R10V+100; R200=200

Among them, the special T and C bits will only have the characteristics of bit or int according to the logic

of the program

EX:

/// T1 indicates bit type
/// whether timeout

IF T1 THEN

R10:=20;

/// T1 represents the value of current timer
/// is the integer of int16

ELSEIF T1>100 THEN

R10:=30;

END_IF

///At this time, T1 will be regarded as a Bit type for negation
MO0:=NOT T1;

32

M %31 PLC #181t

=

===

ST fER

3-9 Calling System Built-In Functions

The description of the built-in functions will be shown as below:

<Function> (<Parameter 1> := <Input Parameter 1>, ...);

Like the ladder diagram, ST has some built-in functions for users to call, which will appear in the toolbox

column on the right.

You can drag and drop from the toolbox or double-click the field and it will be added to the text.

When calling, the order of parameters can be changed at will, but it cannot be omitted.

Unless some special values are allowed to be omitted

Maind x

MainUnit > Main®

Commands

IF
IF_ELSE
IF_ELSEIF_ELSE
CASEOF

IF R_TRIG(S:=M2 THEN

FCOS' S:=Tag_FlR100
WHILE M2:= H
FOR
Repeat END_IF
Loop BREAK
Loop EXIT

, D:= Tag_FlR102 ;

R10:=FCOS(S:=Tag_FlR106 R100;
60TO
CALL

Tag_F1lR100:=

Tag_F1lR100:

Tag_FlR100:

ToolBox

Row:7, Col:1 [HEY

Register
Address

High Speed Timer/Counter -

Register Type | Bit

Basic -
Timer/Counter

Arithmetic
241
23
[28]
B1
B33
34
1207]
[208]
[209]
1210]
1211
[218]
[219]

Data Movement
Code Convert
PID Control
170
Watch Dog Timer

X
0

0] 1[0z 03] 04[05 06 070/ +

o000 |00
ws OO0O0000O00O0
we | OO0O000000O0

OO0O0O0O00cL

Some of the functions will be divided into 32 bit mode (the default is 16 bit mode), you will need to add

D_in front of the function to clearly indicate that the function is in 32 bit mode. You can directly input D_

and the corresponding will appear the list of hints indicates those with 32 bit mode.

EX: ZEHIBEIRE RS
i LR

IETEER

IR - R - fEE - Wi - RE - EE -
£ AREE =H e £ ki BiE AR e STRE Eat AhEE
DR300 sl FFFFFFFFH [R300] DR300 +rss FFFFFFFFH [R300]
DR400 g 0000000 [R400] DR40D +7Esl 80000000H [RA00]
33

M %31 PLC #181t

sa= ST A

For the detailed parameter content of each call function, please refer to FUN file. The following is an

introduction for different FUN.
3-9-1 Timer

Prototype:
(:= (* Trigger Bit Rising Edge ->ON, Falling Edge ->OFF *),
= (* Timer 0~1023 *),
= (* preset value (0~32767) %),

=> (* time out bit *));

Parameter:
() . Rising Edge Start Timer
Falling Edge Stop run
(int) . Integer from 0~1023 represent Timer TO~T1023
(int) : Timer threshold
() . Whether Timer reaches the target

For detailed description, please refer to corresponding LD Timer files.

3-9-2 Counter / Counter L

There are two groups of Counter functions here, so that users can easily distinguish whether they are

currently calling the counter of single word (Counter) or the version of double words (Counter_L)

Prototype:
(:= (* Pulse Signal *),
:= (* CLR Signal *),
:= (* counter number (0~1023) *),
:= (* Preset value (Single Word 0~65535) *),
=> (* Counter Is Up *));
(:= (* Pulse Signal *),
:= (* CLR Signal %),
:= (* counter number (1024~1279 Long counter) *),
:= (* Preset value (Double Words) *),
=> (* Counter Is Up *));
Parameter:
() . Off->On Countonce //MO0,M9129...etc
() : Whether to clear counter
(int) : Counter id 0~1279
(in®) . Counter Default value
() . Whether Counter reaches the target //MO0,CO...etc
34

M %5l PLC #181ERES ST A

35

M %31 PLC #181t

zh=

===

ST fER

3-9-3 R_TRIG / F_TRIG

Rising Edge and Falling Edge’ s detecting function

Prototype:
Mode 1:
(b=, 0=>)
(b=, 0=>)
Mode 2:
(5=)
(=)
Implied with Return Value
Parameter:
() . Rising/Falling Edge Detecting source
() . Detecting result
Example:
Mode 1: (S:=MO0, D:=Mb5);
Mode 2:
IF (S:=M0) THEN
++R100;
END_IF

3-9-4 TARESUB and TAREZEOFFSET

These two functions are derived from the original FUN258. RERTZIES B IFL KN
For detailed parameter settings from MODCONF, please refer to the original FUN258 file.
Splitting into two independent functions is also a function that is convenient for users to call at a

glance when writing.

Prototype

36
M %5l PLC #181ERES ST A

3-10 Functions with multiple calling modes

Like the TRIG detection commands in Chapter 3-9-3 above, these commands support two types, one is
directly complete call, the other is to omit the target value as the return value of the function, the
following table shows the currently available function with the feature:

YNRITHE 3-9-3 FEIPAVEEREAIIES - BEEHIEMERRE - —EEHEETEE -
S—ERERTFHNERNEEFRUE(D) - TRAAENEAZSMENERI

FSQR D FSQR(S:=,D:=)
FSIN D FSIN(S:= ,D:=)
FCOS D FCOS(S:=,D:=)
FTAN D FTAN(S:= ,D:=)
FASIN D FASIN(S:= ,D:= ,MD:=)
FACOS D FACOS(S:= ,D:= ,MD:=)
R_TRIG D R_TRIG(S:=,D:=)
F_TRIG D F_TRIG(S:= ,D:=)

ItoF D ItoF(S:=,D:=)

Ftol D Ftol(S:=,D:=)

That is to say, the parameters of the above-mentioned functions with return characteristics can be
omitted when calling again, and directly use another parameter to undertake or directly operate.
EX:
Without omission:
FSIN(S:=Tag_Float_DR100, D:=Tag_Float_DR102)
Omit the return parameter: (AREIEEERRRER - RID D EES A —LINAPES 2542 #IER)
Tag_Float_DR200 := FSIN(S:=Tag_Float_DR100) + FSIN(S:=Tag_Float_DR102);

37
M %5l PLC #181ERES ST A

3-11 EEMESE

The following instruction list shows the instructions operating continuously in the background. The way

to use it is to place it outside the IF loop to execute it every scan cycle, and determine the operating state

of the function according to the EN signal

As the example shown below:

SubUnit > Subl
IF M0 THEN
M1e0:=1,
ELSE
M100:=0,
END_IF

I

I

HSPWM2 EN:= M100,Pw
8|

BLESHER, RAFIE RITHEER
The following table shows the #EHES

:= R2,0p:= 1,Hz:= R6,

e —EREAN -

currently included:

ACT M32,ERR

I

LCNV 33
MLC 34
TPCTL2 99
RAMP2 98
HSPWM 139
HSPSO 140
MPARA 141
PSOFF 142
PSCNV 143
MPG 148
ModBUS 150
CLINK 151

38

M %31 PLC #181t

M33) ;

zh=

EI==]

I

ST fER

ReadWriteFileReg 160
WriteSDMem 161
ReadSDMem 162
PID2 38

DBUF 115
ICA 137
ICF 138
NCR 152
CMCTL 156
ME_START 176
ME_SYSSTOP 177
ME_HOME 178
ME_POS 179
ME_JOG 180
ME_CHGPRM 181
ME_PAUSE 182
ME_RESUME 183
ME_HALT 184
ME_RSTALM 185
ME_STOP 186
ME_SYSINIT 187
ME_RCPR 188
ME_RCPW 189

39

M %31 PLC #181t

zh=

EI==]

ST fER

ME_CAMR 191
ME_CAMW 192
ME_GEAR_IN 193
ME_VEL_CTL 194
ME_TOR_CTL 195
ME_CAM_GEN 196
ME_AXI_MOV 197
ME_SET_MAP 198
ME_VIR_AXI 235
HSPWM2 144
TARESUB

TAREZEOFFSET

40

M %31 PLC #181t

zh=

EI==]

ST fER

3-12 Enable/Disable Interrupt and Special Instructions

Please refer to FUN 145, 146
INTEnable! LB:

INTDisable

LB parameters input integers from 1 to 49, corresponding to the types of interrupts.
For all supported types, please refer to the chapter of special instructions.

MainUnit = F T Row:1, Col:28

1 INTEnable(LB:=INT_D;

Interrupt
Labe

INT No. Interrupt Priority Condition Note

UserView Source

The software
high speed
counter
HSC4~HSC7
can be assigned
as the trigger

source of an
Build-in y

1 Digital
Inputs

X0+l X0 positive interrupt

(INTO+) edge trigger X0~X15.
Therefore, the
interrupt
priority of the
software high
speed
counter
depends on

41
M £33 PLC ##B1EiES ST ERFM

X0-1
2
(INTO-)
XT1+1
3
(INT1+)
X1-1
4
(INT1-)
c X2+1
(INT2+)
X2-1
6
(INT2-)
X3+1
7
(INT3+)
X3-1
8
(INT3-)
X4+1
9
(INT4+)
X4-1
10
(INT4-)

42

X0 negative
edge trigger

X1 positive
edge trigger

X1 negative
edge trigger

X2 positive
edge trigger

X2 negative
edge trigger

X3 positive
edge trigger

X3 negative
edge trigger

X4 positive
edge trigger

X4 negative
edge trigger

the priority of

X0~X15.

M %31 PLC #181t

=

===

ST fER

11

12

13

14

15

16

17

18

19

Hardware 3
Time Tick

X5+|
(INT5+)

X5-1
(INT5-)

X6+
(INT6+)

X6-|
(INT6-)

X7+l
(INT7+)

X7-1
(INT7-)

STMOI

STM1I

STM2I

43

X5 positive
edge trigger

X5 negative
edge trigger

X6 positive
edge trigger

X6 negative
edge trigger

X7 positive
edge trigger

X7 negative
edge trigger

Interval from
Tms~60000ms

Interval from

Tick unit Tms

Tms~60000ms

Interval from

Tms~60000ms

M %31 PLC #181t

b

Value=1~60000

zh=

===

ST fER

20

21

22

23

24

25

26

27

28

HST

STM3I

LTMOI

LTM1I

LTM2I

LTM3I

HSTOI

HST1I

HST2I

HST3I

44

Interval from
Tms~60000ms

Tick unit
Interval from
10ms >

10ms~60000ms
Value=1~6000

Interval from
10ms~60000ms

Interval from
10ms~60000ms

Interval from
10ms~60000ms

Interval from Tick uint

0.1ms to 100us >
6000ms Value=1~60000
Interval

from 0.1ms to
6000ms

Interval
from 0.1ms to
6000ms

Interval

from 0.1ms to
6000ms

M %5l PLC #181ERES ST A

29

30

31

32

33

34

35

36

37

HSC

HST4I

HST5I

HSTol

HST7I

HSCOI

HSC1I

HSC2I

HSC3lI

HSCA4|

45

Interval from
HST4 to
(CV=PV)

Interval from
HST5 to
(CV=PV)

Interval from
HST6 to
(CV=PV)

Interval from
HST7 to
(CV=PV)

Interval from
HSCO to
(CV=PV)

Interval from
HSC1 to
(CV=PV)

Interval from
HSC2 to
(CV=PV)

Interval from
HSC3 to
(CV=PV)

Interval from
HSC4 to
(CV=PV)

Not supported
yet

Not supported
yet

Not supported
yet

Not supported
yet

M %3l PLC #B1EFES

ST fER

38

39

40

41

42

43

External
Module
Event

HSC5I

HSCol

HSC7I

COCPUI

LHMI

RHMOI

46

Interval from
HSC5 to
(CV=PV)

Interval from
HSC6 to
(CV=PV)

Interval from
HSC7 to
(CV=PV)

Event from
Co-processor
(e.g. EtherCAT
motion
controller)

Event form
left-side
high-speed
module

Event form
Right-side

high-speed
module 1

M %31 PLC #181t

zh=

===

ST fER

Event form
Right-side
high-speed

44 RHM1I

module 2

Event form
Right-side
45 RHMZ2I .

high-speed

module 3

Event form
Right-side
46 RHM3I .

high-speed

module 4

Event form
Right-side
high-speed

47 RHM4|

module 5

47

M %31 PLC #181t

zh=

===

ST fER

48

49

66

67

68

RHMS5I

Motion

Control
MSR

Cycle

Interrupt

Build-in

Digital

Inputs

(MA

Series)
X8+1
(INT8+)
X8-1
(INT8-)
X9+I
(INT9+)

48

Event form
Right-side
high-speed
module 6

Periodic

synchronization Motion Cycle =

routine for
motion

X8 positive
edge trigger

X8 negative
edge trigger

X9 positive
edge trigger

T ms

The software
high speed
counter
HSC4~HSC7
can be assigned
as the trigger
source of any
interrupt
X0~X15.
Therefore, the
interrupt
priority of the
software high
speed
counter
depends on
the priority of
X0~X15.

M %5 PLC #18{ERES ST A FM

69

70

71

72

73

74

75

76

77

X9-1 X9 negative
(INT9-) edge trigger

X10+l X10 positive
(INT10+) edge trigger

X10-1 X10 negative
(INT10-) edge trigger

X11+1 X11 positive
(INT11+) edge trigger

X11-1 X171 negative
(INT11-) edge trigger

X12+1 X12 positive
(INT12+) edge trigger

X12-1 X12 negative
(INT12-) edge trigger

X13+l X13 positive
(INT13+) edge trigger

X13-1 X13 negative
(INT13-) edge trigger

49

M %31 PLC #1181t

=

===

ST fER

78

79

80

81

X14+1 X14 positive
(INT14+) edge trigger

X14-1 X14 negative
(INT14-) edge trigger

X15+1 X15 positive
(INT15+) edge trigger

X15-1 X15 negative
(INT15-) edge trigger

50

M %31 PLC #181t

=

===

ST fER

3-13 BERIHRERINEEERE

A. Timer, Counter
TO~TN, CO~CN

£ ST IRIR P il TS {E £ 2 E IS B A Bool AYIFIEIR Integer EEIAVITHE
fFlyn:
RO:=T1; //E1E Timerl BRIFTEZIREETFZ RO(Integer)
MO0:=T1; // E1E Timerl BHRIEEEETAVAREZFZI M0 (Bool)
M3:=C1>10; // BUZ#IER Counter 1 EHFTEFEB 10

IF R_TRIG(T1) THEN
/// & Timerl i 0 £ 1 BOIFIE (FRYAETROBR), QIZ# 1T

END_IF

51
M %5 PLC #18{ERES ST A FM

B. &R Enum
57K Enable / Disable PETRBEHARE - B 7 RIENFEKBURES
ABR O LUE A 2 FERRAY Enum 28]
o] B3] INT_ B9F AR B ERE BV — £ 5] FHAY Enum

INTDisable! LB:= INT_ ;

THEN

Biyn:
IF M2 THEN
INTEnable(LB:= INT_STM1l);
ELSE
INTDisable(LB:= INT_STM1I);
END_IF
52

M %31 PLC #EB{ERES ST RS

C. SiEFTE! Enum “HSC_” Prefix

FIUAEHEI S EES U
HSCTR(CN:= (* 0~7 *));
HSCTW(S:=, CN:=, D:=);

Hohcen, IRED HESEXAZIEETHEE - BTHRESE thEA HSC_
FHEEAY Enum

ARtz B B OlEE
fign:

HSCTR(CN:= HSC_HSCO(* 0~7 *));
HSCTW(S:=R0 , CN:=HSC_HSCO , D:=HSC_PV);

53
M %5l PLC #181ERES ST A

D. File Register Enum F0~F32767
21% FUN 160 BY Sb 221 - BR 7 £ 0~32767 25b - TJLU{EF FO~F32767

AY Enum REARBEIMUE.
fim:
ReadWriteFileReg' EN:= R_TRIG MO

R_W:=] :
INC:= M10

Sa:= Rl1l
Sb:= F10
R1086

54
M £33 PLC ##B1EiES ST ERFM

3-14 Calling FCM Function

The calling method is similar to calling system function, while the functions are built by users themselves.

The built functions will be placed in FCM List in the command column on the left.

Commands £

IF
IF_ELSE
IF_ELSEIF_ELSE
CASEOF
WHILE
FOR
Repeat
Loop BREAK
Loop EXIT
LBL
GOTO
CALL

IF_RisingTrigger

IF_FalliniTriiier

Fcm@
GetBiggerInteger

Users can double-click the section to insert the selected function to the text.
FCM can specify a Return Value, which can be call directly when programming.

EX:

FCM:

7] GetBiggerinteger |

Commands €| FB > GetBiggerInteger

RET:=PAD,
IF
IF_ELSE
IF_ELSEIF_ELSE IF PA1>=PAG® THEN
CASEOF - .

FOR END_IF
Repeat

Loop EREAK
Loop EXIT

LEL_F
GOTO_F
VAR Extern

Return
IF_RisingTrigger

IF_FaLLiniTriiier

Fem@

FCM Parms

PAB
PAL
RET

55
M %31 PLC #181t

zh=

EI==]

ST fER

Calling side:

@GetBiggerlnteger x >@ main |

Commands <

T
IF
IF_ELSE
IF_ELSEIF_ELSE
CASEOF
WHILE
FOR
Repeat
Loop BREAK
Loop EXIT
LEL
GOTO
CALL

IF_RisingTrigger
IF_Falling e

GetBiggerInteger

2

MainUnit = main

R100:=GetBiggerInteger(PA®:= R10

,PA1l:= R20

In this way, some temporarily unnecessary variable declarations can be reduced in a timely manner.

56

M %31 PLC #181t

zh=

EI==]

ST fER

3-15 HECEEEIR

EmmEFIURFERENRE Fem PFUTHEREA

A. TG -
. TRTEASHBE
2. BIRS2HBE
3. 28 (=>)IEERBAEIE
i f:
LLR_TRIG EEEXFH
SEERIF : R_TRIG(S:=M0, D=>M1);
RAZ2E8F ANE R A RBIERMIER
L3l a9 R = o] A B

R_TRIG(D=>M1, S:=M0);
R_TRIG(D=>M1);

HIESZWA

28 BW . R_TRIG(MO, M1);
Re

=L
A Return WRIZH LTI UREE -

R_TRIG(S:= MO);

R_TRIG(MO);
B Return MMM EIEHMEHSRHNTESER
IF R_TRIG(MO) THEN

//// some statements
END_IF

M10:= R_TRIG(MO0) AND R_TRIG(M1);

1 AR | FTASEEBRAFASEWFEISXAEEREBMN:
R_TRIG(S:=MO0, M1);
R_TRIG(M1,D:=M2);

U EREE#EARSERNEA

57
M %5l PLC #181ERES ST A

